Empirical Bond-Strength-Bond-Length Curves for Oxides

By I. D. Brown and R. D Shannon*
Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada

(Received 16 October 1972; accepted 4 January 1973)

Abstract

Bond-strength-bond-length relationships for bonds between oxygen and $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Be}^{2+}, \mathrm{B}^{3+}, \mathrm{Na}^{+}$, $\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Si}^{4+}, \mathrm{P}^{5+}, \mathrm{S}^{6+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{Ti}^{4+}, \mathrm{V}^{5+}, \mathrm{Cr}^{6+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$, $\mathrm{Ga}^{3+}, \mathrm{Ge}^{4+}$ and As^{5+} have been derived by requiring that the sums of the bond strengths around the cations be equal to their valence in 417 crystals whose structures have been accurately determined. The relationship is of the form $s=\left(R / R_{0}\right)^{-N}$ where $s=$ bond strength, $R=$ bond length and R_{0} and N are fitted constants. It is further shown that all ions with an isoelectronic core can be fitted by a single pair of parameters, R_{0} and N, that are independent of the ionic character of the bond and the coordination number of the cation. The resulting bond strengths have the property that they are directly related to the covalent character of the bond and that their sum around each atom is, on average, within about 5% of its valence. The bond-strength-bond-length curves are particularly useful in accounting for bonding in cases where the coordination is very distorted (e.g. $\mathrm{Na}^{+}, \mathrm{Cu}^{2+}$ and V^{5+}). They can also be used to predict the positions of hydrogen atoms, to analyze for different oxidation states and site occupancies, to calculate ionic radii and to provide an indication of the correctness of crystal structure determinations.

Introduction

The concept of mean bond strength (\bar{s}) was defined by Pauling (1929) as the valence (z) of a cation divided by its coordination (v). He enunciated the electrostatic valence principle by which the sums ($p=\sum \bar{s}$) of mean bond strengths around the cations and anions are approximately equal to their valence. This principle has been tested frequently by mineralogists, particularly in silicate structures, and is in general only approximately valid with the sum of the bond strengths around the anions deviating by as much as 40% from the valence (Baur, 1970).

In the original formulation of the principle, the variation of bond strength with bond length was determined by the factor $1 / v$. It is possible, however, to relate bond strength (s) to bond length (R) using analytical expressions ($R-s$ curves). Byström \& Wilhelmi (1951) used Pauling's (1947) logarithmic relationship for covalent bonds in the form:

$$
\begin{equation*}
R-R_{1}=-2 k \log n \tag{1}
\end{equation*}
$$

between bond length, R, and bond number n, \dagger to evaluate bond strengths in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{V}_{2} \mathrm{O}_{5}\left(R_{1}=\right.$ length of a single bond and k is an arbitrary constant). Evans (1960) revised the value of R_{1} for V^{5+} to analyze valence sums in 10 vanadates containing V^{4+} and V^{5+}. The agreement of calculated and observed valences was for the most part excellent although the bond-strength sum, p_{v}, around vanadium in $\mathrm{V}_{2} \mathrm{O}_{5}$ was 5.47 and thus deviated considerably from the ideal value of $5 \cdot 0$.

[^0]Zachariasen $(1954,1963)$ and Zachariasen \& Plettinger (1959) used the distances in a number of borates and uranates to prepare empirical tables of $\mathrm{H}^{+}-\mathrm{O}, \mathrm{B}^{3+}-\mathrm{O}$, and $\mathrm{U}^{6+}-\mathrm{O}$ ionic bond strengths $v s$. bond lengths and these resulted in bond-strength sums which did not differ by more than 0.1 valence unit (v.u.) from the ideal values. Clark, Appleman \& Papike (1969) used an equation of the form $R=a+b s+c s^{2}$ where $R=$ bond distance, $s=$ bond strength, and a, b, c are variable parameters for each ion pair to evaluate the strengths of the bonds $\mathrm{Na}^{+}-\mathrm{O}, \mathrm{Mg}^{2+}-\mathrm{O}, \mathrm{Ca}^{2+}-\mathrm{O}, \mathrm{Al}^{3+}-\mathrm{O}, \mathrm{Fe}^{3+}-\mathrm{O}$ and Si^{4+} - in pyroxenes. Perloff (1970) assumed a linear relationship between bond length and bond strength for $\mathrm{Mo}^{6+}-\mathrm{O}$ distances in $\mathrm{Na}_{3}\left(\mathrm{CrMoO}_{6} \mathrm{O}_{24} \mathrm{H}_{6}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$.

Donnay (1969) and Donnay \& Allman (1970) have devised a scheme for constructing $R-s$ curves using an equation of the form

$$
\begin{equation*}
s=s_{0}\binom{\bar{R}}{R}^{N} \tag{2}
\end{equation*}
$$

where $s=$ strength * of a bond of length R ; $s_{0}=$ ideal strength of the bond of length \bar{R}, the mean value of bond length in an individual polyhedron, and $N=$ a constant which is different for each cation-anion pair and in some cases for different cation sites. This expression is used for values of $R<\bar{R}$. When $R>\bar{R}$ they assume a linear relation between s and R,

$$
\begin{equation*}
s=s_{0} \frac{R_{\max }-R}{R_{\max }-\bar{R}} \tag{3}
\end{equation*}
$$

[^1]Values of $R_{\text {max }}$ were determined for most metal-($\left.\mathrm{O}, \mathrm{OH}\right)$ bonds in the periodic table by extrapolating an empirical $R-s$ curve derived from the ionic radii of Shannon $\&$ Prewitt (1969) to $s=0$. They achieve excellent agreement between the valence and the sums of the bond strengths but they are forced to construct unique curves for each structure to be analyzed and in certain cases for even the same cation in different sites, e. g. $\mathrm{Ca}(1)$ and $\mathrm{Ca}(2)$ in pumpellyite (Allmann \& Donnay, 1971).

Baur (1970) uses the deviations from Pauling's electrostatic valence principle to predict which bonds will be longer or shorter than the average in a particular crystal. He relates the bond length $\left(R_{i j}\right)$ to the sum $\left(p_{j}\right)$ of the mean bond strengths around the anion (j) using a linear expression of the form

$$
\mathrm{R}_{i j}=a_{i}+b_{i} p_{j}
$$

He has determined the values of the empirical constants a_{i} and b_{i} for fifteen $\mathrm{M}_{i}-\mathrm{O}$ atom pairs using the bond lengths observed in some 130 structures but he requires different parameters for the same cation in a different coordination. His approach works well provided the range of $\mathrm{R}_{i j}$ values is not large, but for very distorted environments such as are sometimes found around V^{5+}, his method does not work satisfactorily (Gopal, 1972).

We have derived a set of empirical bond-strength-bond-length* curves based on the equation

$$
\begin{equation*}
s=s_{0}\left(\frac{R}{R_{0}}\right)^{-N} \tag{4}
\end{equation*}
$$

by fitting the constants, s_{0}, R_{0} and N, so that the sums of the bond strengths around the cations are set as nearly as possible equal to the valence in a large variety of oxide structures.

While the equation we use [equation (4)] is the same as that [equation (2)] used by Donnay \& Allman (1970), our approach differs from theirs in a number of significant ways. First, we use equation (4) over the whole range of bond strengths, thereby avoiding the assignment of $R_{\text {max }}$ (the maximum bonding distance) and the coordination number which they need in order to calculate \bar{R}. Secondly we use the same curve for all bonds between two atomic species wherever they occur. Thirdly, we obtain the values of s_{0}, R_{0} and N in a different manner, using the information available in a large number of crystal structures rather than tailoring the values to the specific structures under consideration.

[^2]
Procedure

The bond strength (s) can be calculated from the bond length (R) using the computer program $B O S T$ which contains a variety of functions of the form $s=f(R)$, $\left[\right.$ e.g. $s=A((R-B) / c)^{-N}$ or $\left.s=10(A-R) / R_{0}+c\right]$. We have chosen to use the following expression

$$
\begin{equation*}
s=s_{0}\left(\frac{R}{R_{0}}\right)^{-N} \tag{5}
\end{equation*}
$$

because it gives a good fit and has the advantage of simplicity. The parameter s_{0} (the bond strength associated with a bond of length R_{0}) is assigned arbitrarily by the user and R_{0} and N are constants found by leastsquare fitting as described below.

An initial set of parameters is chosen and used to calculate the bond strength $s_{i j}$ for the bond between atom i and atom j using the observed bond length $R_{i j}$. The sum $\left(p_{i}\right)$ of these bond strengths around the atom i is given by

$$
\begin{equation*}
p_{i}=\sum_{j} s_{i j} \tag{6}
\end{equation*}
$$

and in the ideal case this should be equal to the valence z_{i} of atom i.

The initial set of parameters are then refined by least squares to minimize the function

$$
\begin{equation*}
Q=\sum_{i=1}^{m} w_{i}\left(z_{l}-p_{i}\right)^{2} \tag{7}
\end{equation*}
$$

where m is the number of atoms of type i used in the calculation and w_{i} is a weight set equal to $1 / \sigma^{2}\left(p_{i}\right), \sigma\left(p_{i}\right)$ being the standard error in p_{i} as calculated from $\sigma\left(R_{i j}\right)$, the standard error in the experimental bond length. Refinement works best if the correlation between the parameters R_{0} and N is kept small. This can be done by choosing s_{0} so that $R_{i j} / R_{0} \sim 1 ; R_{0}$ then represents a typical bond length and s_{0} the corresponding typical bond strength.

The program calculates a number of measures of the agreement between the valence and the bond strength. In addition to the difference, $\left(z_{l}-p_{i}\right)$, it calculates the relative difference $\left(z_{i}-p_{i}\right) / z_{i}$ and the difference normalized to the standard error $\left(z_{i}-p_{i}\right) / \sigma\left(p_{i}\right)$, the latter being the quantity which enters into the calculation of Q. The overall agreement for the m atoms around which sums have been made is conveniently measured by the r.m.s. relative deviation $D_{i}=\left[\left(\sum\left(z_{i}-p_{i}\right)^{2} / z_{i}^{2}\right) / m\right]^{1 / 2}$.

Three different procedures were followed in determining the parameters R_{0} and N. For cations which exist with several different coordination numbers bondstrength sums around all cations for which reasonably accurate bond lengths were available were calculated. The parameters were then refined by fitting the bond strength sums to the valence of the cation. In cases where the cation normally has only one coordination number this procedure is unsatisfactory since almost any value of N will give an equally good fit. In these cases it was necessary to give much greater weight to
structures with atypical coordination numbers. For example the slopes of the $R-s$ curves for $\mathrm{Si}^{4+}-\mathrm{O}$ and $\mathrm{Mg}^{2+}-\mathrm{O}$ were constrained to pass as close as possible to the stishovite and $\mathrm{SiP}_{2} \mathrm{O}_{7}$ points and to the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ and $\mathrm{MgV}_{2} \mathrm{O}_{4}$ points respectively. Furthermore, since no examples of either tetrahedral $\mathrm{Ti}^{4+} \mathrm{O}_{4}$ or octahedral $\mathrm{P}^{5+} \mathrm{O}_{6}$ are known, we were forced to use data from $\mathrm{TiCl}_{4}, \mathrm{TiBr}_{4}$, and PCl_{5}. In these cases Pauling radii for Cl^{-}and Br^{-}corrected for CN in a manner similar to that for O^{-2} (Shannon \& Prewitt, 1969) were subtracted from the average $\mathrm{M}-\mathrm{X}$ distances. The resulting radii for ${ }^{\mathrm{IV}} \mathrm{Ti}^{4+}$ and ${ }^{\mathrm{V}} \mathrm{P}^{5+}$ were added to the radius for ${ }^{11} \mathrm{O}^{2-}$ to obtain approximate ${ }^{\mathrm{IV}} \mathrm{Ti}^{4+}-\mathrm{O}$ and ${ }^{\text {VI }} \mathrm{P}^{5}-\mathrm{O}$ distances. As in the cases of $\mathrm{Si}^{4+}-\mathrm{O}$ and $\mathrm{Mg}^{2+}-\mathrm{O}$, the $R-s$ curves were constrained to pass through the ${ }^{\mathrm{Iv}} \mathrm{Ti}^{4+}-\mathrm{O}$ and ${ }^{\mathrm{VI}} \mathrm{P}^{5+}-\mathrm{O}$ points.

The curves for $\mathrm{H}^{+}, \mathrm{S}^{6+}$ and Cr^{6+} were refined in a different way which makes use of the fact that although these atoms normally occur only with one coordination number the bond lengths can vary considerably. In this case the bond-strength sums around the oxygen atoms as well as around the cations were used. This unfortunately restricted the number of structures that could be uscd to those for which the bond strengths from the oxygen atoms to other cations in the structure could be calculated but on the other hand it gives a much stronger leverage on the value of N. The structures used in the refinements are listed in the Appendix.

Although the interatomic distances published in recent crystal-structure determinations are frequently quoted with standard errors of $0.005 \AA$ or less, it is well known that they are subject to systematic errors larger than this. Principal among these is the error arising from thermal motion which is well understood but difficult to apply because of the need to know how the atomic motions are correlated with each other. In cases of molecular fragments which can be treated as rigid (e.g. SO_{4}^{2-}) it is possible and customary to make these corrections, but for more weakly bonded groups the correction becomes very uncertain. We have therefore only used distances uncorrected for thermal motion, conscious of the fact that these distances are systematically too low (~ 0.01 to $0.02 \AA$) and will have a true standard error much larger than the values quoted. A more critical evaluation of the effects of thermal motion on the bond distances would, no doubt, improve the agreement between the bond-strength sums and the valence, but such an evaluation is not possible at present.
The $R-s$ curves are particularly useful in accounting for the variation of bond lengths with cation coordination number, a large effect that has long been recognized (Goldschmidt, Barth, Lunde \& Zachariasen, 1926; Pauling, 1927; Zachariasen, 1931). Recently, however, the average distances have been found to depend in some measure on the anion coordination number (Jeffreys \& Slaughter, 1963; Slaughter, 1966; Shannon \& Prewitt, 1969; Brown \& Gibbs, 1969) and the nature of the cations surrounding the oxygen ions (Noll, 1963;

Lazarev, 1964; Pant \& Cruickshank, 1967; Brown \& Gibbs, 1970; Shannon, 1971).

Because this latter dependence is generally not yet well defined, this effect has been ignored. The former dependence can be included by making an a priori correction for the anion coordination number using the variation of oxygen radius observed by Shannon \& Prewitt (1969). Thus all distances can be 'corrected' to those for two coordinate oxygen by subtraction of the following amounts: $0.01 \AA$ (3 coordination), $0.03 \AA$ (4 coordination) and $0.05 \AA$ (6 coordination), etc. For comparison the bond strength parameters have been refined using both the 'corrected' and the 'uncorrected' bond distances.
Kálmán (1971) has shown that the average tetrahedral M-O distances (\bar{R}) for atoms in groups IV to VII of the periodic table can be expressed in terms of the valence (equivalent to bond strength) by the simple relation

$$
\begin{equation*}
\bar{R}=0.0113 n^{2}+R^{\prime} \tag{8}
\end{equation*}
$$

where $n=8-z$ and R^{\prime} is constant for a given row of the periodic table. This suggests that a similar relation might also hold for the standard distances, R_{0}. Rather than use equation (8), we have found that we get a good fit with the function

$$
\begin{equation*}
s_{0}=\binom{R_{0}}{R_{1}}^{-N_{1}} \tag{9}
\end{equation*}
$$

where R_{1} and N_{1} are constants for a given row. In most cases the value of N_{1} obtained does not differ by more than 1 from the individual N 's of the atoms in the row. This allows a single pair of parameters to be used for all the elements in the same row that have isoelectronic ionic cores. Thus one curve of the form

$$
\begin{equation*}
s_{0}=\binom{R}{R_{1}}^{-N_{1}} \tag{10}
\end{equation*}
$$

can be used to calculate bond strengths around Li^{+}, Be^{2+}, and B^{3+} and another to calculate bond strengths around $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Si}^{4+}, \mathrm{P}^{5+}$, and S^{6+} etc. The fact that such a fit can be made implies that the length of the $\mathrm{M}-\mathrm{O}$ bond of unit strength $\left(R_{1}\right)$ is the same (or nearly the same) for all ions with the same electron core. To the extent to which this is true one can calculate bond strengths for bonds not included in the table (e.g. $\mathrm{C}-\mathrm{O}, \mathrm{N}-\mathrm{O}, \mathrm{Cl}-\mathrm{O}$; see, for example, Table 15).

Results

Tables 1, 2 and 3 list respectively the refined parameters obtained (1) from 'uncorrected' distances for each individual M-O pair (2) from 'uncorrected' distances for ions having isoelectronic cores and (3) from distances corrected for oxygen coordination for each individual M-O pair. Fig. 1 shows typical $R-s$ curves for $\mathrm{Si}^{4+}, \mathrm{Ge}^{4+}$ and Ti^{4+}. The points incidate the values of R that were used in the refinement and are, for convenience, plotted along their respective curve. Fig. 2
shows the curves derived from the universal $R-s$ parameters and gives a good indication of the way in which bond strengths fall off with increasing distance.

Table 1. Individual bond-strength-bond-length parameters for $\mathrm{M}-\mathrm{O}$ bonds in the expression $s=s_{0}\left(R / R_{0}\right)^{-N}$

Cation	s_{0} (v.u.)	$R_{0}(\AA)$	N
H^{+}	0.5	$1 \cdot 184$	$2 \cdot 2$
Li^{+}	$0 \cdot 25$	1.954	$3 \cdot 9$
Be^{2+}	0.5	1.639	$4 \cdot 3$
B^{3+}	$1 \cdot 0$	$1 \cdot 375$	$3 \cdot 9$
Na^{+}	$0 \cdot 166$	$2 \cdot 449$	$5 \cdot 6$
$\mathbf{M g}^{\mathbf{+}}$	0.333	2.098	$5 \cdot 0$
Al^{3+}	0.5	1.909	$5 \cdot 0$
Si^{4+}	$1 \cdot 0$	$1 \cdot 625$	$4 \cdot 5$
$\mathrm{P}^{\text {s }}$	1.25	1.534	$3 \cdot 2$
S^{6+}	1.5	1.466	$4 \cdot 0$
K^{+}	$0 \cdot 125$	$2 \cdot 833$	5.0*
Ca^{2+}	0.25	$2 \cdot 468$	$6 \cdot 0$
Sc^{3+}	0.5	$2 \cdot 121$	6.0
Ti^{4+}	0.666	1.952	$4 \cdot 0$
$\mathrm{V}^{\text {+ }}$	1.25	1.714	$5 \cdot 1$
Cr^{6+}	1.5	$1 \cdot 648$	$4.9 \dagger$
Mn^{2+}	0.333	$2 \cdot 186$	$5 \cdot 5$
Fe^{3+}	0.5	2.012	$5 \cdot 3$
Fe^{2+}	0.333	$2 \cdot 155$	$5 \cdot 5$
Co^{2+}	0.333	$2 \cdot 118$	$5 \cdot 0$
Cu^{2+}	0.333	2.084	$5 \cdot 3$
Zn^{2+}	0.5	1.947	$5 \cdot 0$
Ga^{3+}	0.75	1.837	$4 \cdot 8$
Ge^{4+}	1.0	$1 \cdot 750$	$5 \cdot 4$
As ${ }^{5+}$	$1 \cdot 25$	$1 \cdot 681$	$4 \cdot 1$

* Refines to $N=4.3$ but $N=5.0$ gives as good agreement.
\dagger Refines to $N=6.1$ but $N=4.9$ gives better overall agreement.

Table 2. Universal bond-strength-bond-length parameters for $\mathrm{M}-\mathrm{O}$ bonds in the expression $s=\left(R / R_{1}\right)^{-N_{1}}$

	Number of electrons in cation core	$R_{1}(\AA)$	N_{1}
\quad Cations	0	0.86	2.17
H^{+}	2	1.378	4.065
$\mathrm{Li}^{+} \mathrm{Be}^{2+} \mathrm{B}^{3+}$	10	1.622	4.290
$\mathrm{Na}^{+}+\mathrm{Mg}^{2+} \mathrm{Al}^{3+} \mathrm{Si}^{4+} \mathrm{P}^{5+} \mathrm{S}^{6+}$	18	1.799	4.483
$\mathrm{~K}^{+} \mathrm{Ca}^{2+} \mathrm{Sc}^{3+} \mathrm{Ti}^{4+} \mathrm{V}^{5+} \mathrm{Cr}^{6+}$	23	1.760	5.117
$\mathrm{Mn}^{2+} \mathrm{Fe}^{++}$	$\mathrm{Zn}^{2+} \mathrm{Ga}^{3+} \mathrm{Ge}^{4+} \mathrm{As}^{5+}$	28	1.746

The agreement between the valence and the bondstrength sums is quite sensitive to the value of $N(\pm 0 \cdot 2)$ for small ions whose coordination numbers are well defined e.g. $\mathrm{Be}^{2+}, \mathrm{B}^{3+}, \mathrm{Si}^{4+}, \mathrm{Zn}^{2+}, \mathrm{Ga}^{3+}$ and Ge^{4+}. In other cases N may be varied within a range of ± 2 without making an appreciable difference to the agreement.* On the other hand the values of R_{0} are usually quite well determined, variations of $0.003 \AA$ producing a noticeable change in the observed agreement.

[^3]Table 3. Bond-strength-bond-length parameters for $\mathrm{M}-\mathrm{O}$ bonds (corrected for oxygen coordination) used in the expression $s=s_{0}\left(R / R_{0}\right)^{-N}$

Cation	s_{0} (v.u.)	$R_{0}(\AA)$	N
Li^{+}	$0 \cdot 25$	1.925	$3 \cdot 4$
Be^{2+}	0.5	1.611	$3 \cdot 8$
B^{3+}	1.0	$1 \cdot 343$	3.7
Na^{+}	$0 \cdot 166$	2.421	$5 \cdot 7$
$\mathrm{Mg}^{\mathbf{2}}$	0.333	2.076	$5 \cdot 2$
Al^{3+}	$0 \cdot 5$	1.888	$4 \cdot 6$
Si^{4+}	$1 \cdot 0$	1.605	4.0
P^{5+}	$1 \cdot 25$	1.525	$3 \cdot 2$
K ${ }^{+}$	$0 \cdot 125$	2.823	$6 \cdot 0$
Ca^{2+}	$0 \cdot 25$	2.437	$5 \cdot 5$
Sc^{3+}	$0 \cdot 5$	2.090	$6 \cdot 0$
Ti ${ }^{4+}$	$0 \cdot 666$	1.947	$4 \cdot 6$
V^{5+}	$1 \cdot 25$	1.700	$4 \cdot 8$
Mn^{2+}	0.333	2.165	$5 \cdot 1$
Fe^{3+}	$0 \cdot 5$	1.981	$5 \cdot 2$
Fe^{2+}	0.333	2.128	$4 \cdot 9$
Co^{2+}	0.333	2.087	$5 \cdot 0$
Cu^{2+}	0.333	2.068	$5 \cdot 4$
Zn^{2+}	0.5	1.946	$5 \cdot 7$
Ga^{3+}	0.75	1.822	$5 \cdot 2$
Ge^{4+}	1.0	1.735	$5 \cdot 3$
As^{5+}	1.25	1.671	$4 \cdot 9$

* Refines to $N=4.7$ but $N=6.0$ gives as good agreement.

The relative merits of the universal and individual curves and the individual curves corrected for oxygen coordination can be judged from the agreement indices (r.m.s. relative.deviation) summarized in Table 4. Comparison of the individual $v s$. the universal curves shows better agreement for the individual curves in 15 instances, and worse agreement in only 5 cases. \dagger The mean r.m.s. deviation of 4.0% for the individual curves can be compared with 5.4% for the universal curves. Comparison of individual 'corrected' and 'uncorrected' curves shows better agreement for the 'uncorrected' distances in 10 cases and worse agreement in another 12 cases; the mean r.m.s. deviations being 4.6 and 4.4% respectively. Since calculations involving uncorrected distances are simpler and since the individual curves give a better fit than the universal ones, the 'uncorrected' individual curves with parameters listed in Table 1 are to be preferred for most applications.

Discussion

1. Electrostatic-valence principle

We have tried to find a functional relationship which uniquely relates bond strength to bond length, regardless of structure type, with the constraint that the sum of the bond strengths equals the valence as proposed

[^4]by Pauling (1929). This attempt to evaluate the electro-static-valence principle follows the general lines adopted by most previous workers but differs from them in that our data, evaluated by least-squares techniques, are more extensive. We have analyzed environments of 884 cations in 417 different structures and have derived $R-s$ curves for M-O bonds for the majority of atoms in the first half of the periodic table in a simple twoparameter form. Table 4 shows that the mean r.m.s. deviation of the valence from the calculated bondstrength sums around cations for individual curves is 4.3%; the agreement is worse for the ions $\mathrm{Li}^{+}, \mathrm{Na}^{+}$, $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$, and Mn^{2+}. Fig. 3, in which bondstrength sums around most of the cations evaluated in this study are plotted vs. their average bond length, shows that although the mean deviation is about 5%, individual variations of $10-15 \%$ are still observed.

A detailed examination of the results for V^{5+} shows that while our model accounts for most of the gross features of the structures significant deviations still remain. Table 5 lists the bond sums around the vanadium atoms used in our calculations. For comparison the sums are given using both the individually fitted curve and the curve for 'cations' with the eighteen-electron core. Although the average deviation from $5 \cdot 00$ is only $4 \cdot 2 \%$, it is apparent that there are individual deviations of $10-20 \%$ in some structures. Some of these deviations can be attributed to uncertainties in our knowledge of
the bond lengths (indicated by the errors given for the bond-strength sums) but some have to be attributed to real effects which we cannot as yet explain. That these effects are real is attested, for example, by the bond-

Fig. 1. Individual M-O bond-length-bond-strength curves for $\mathrm{M}=\mathrm{Si}, \mathrm{Ge}$ and Ti . The circles indicate the values of the individual bond lengths used in the calculations. They do not represent the quality of fit between experiment and theory.

Table 4. Statistics concerning the derivation of bond-strength-bond-length parameters
Method 1. Least squares fit R_{0} and N using cation sums only.
2. N chosen to give good fit for atypical coordination numbers. R_{0} refined by least squares.
3. Least-squares fit of R_{0} and N using cation and anion sums.

	Number of structures used	Number of bond strength sums used	Method	R.m.s. relative deviation (\%) uncorrected (Table 1)	Universal (Table 2)	Individual corrected
(Table 3)						

[^5]strength sums consistently found in a number of pyroxene structures where $p_{\mathrm{O}(2)}$ is typically 1.75 and $p_{0(3)}$ lies between $2 \cdot 15$ and $2 \cdot 30$. Martin \& Donnay (1972) attribute the low value of $p_{\mathrm{O}(2)}$ to the presence of OH^{-}ions. However, in the colourless pyroxenes LiVO_{3} and NaVO_{3}, small amounts of hydroxyl ion would be accompanied by reduction of V^{5+} to V^{4+} which would probably result in darkly coloured compounds. It is likely that the second-nearest neighbours are responsible for some of these deviations but a detailed analysis of their role must await further study.

2. Bond-strength-bond-length curves and implications for chemical bonding
 Bond-strength sums calculated using the 10 parameters of the five universal bond-strength curves give al-

Fig. 2. Universal M-O bond-length-bond-strength curves for isoelectronic series. The numbers associated with each curve indicate the number of electrons on the 'cation' (core electrons).

Fig. 3. Experimental bond-length sums $v s$. average $\mathrm{M}-\mathrm{O}$ bond length for most of the atoms used in this study.

Table 5. Bond strength sums around V^{5+}

$v=$ number of bonds used in calculations given in subsequent columns.
$\bar{R}=$ average bond length (\AA) around V^{5+}.
$P_{1}=$ bond strength sums calculated with individual $R-s$ curve $P_{1}=\sum_{i} 1 \cdot 25\left(R_{i} / 1 \cdot 714\right)^{-5.1}$ v.u. (Table 1)
$P_{2}=$ bond-strength sums calculated with universal $R-s$ curve. $P_{2}=\sum_{t}\left(R_{t} / 1 \cdot 799\right)^{-4.483}$ v.u.
(Table 2)
For references see the Appendix.
Figures in parentheses are standard deviations in the last figures quoted.

v	R	P_{1}	P_{2}	Crystal
4	1.715	$5 \cdot 04$ (7)	$5 \cdot 01$ (6)	$\mathrm{Zn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$
4	1.706	$5 \cdot 12$ (6)	$5 \cdot 08$ (5)	YVO_{4}
4	1.721	$4 \cdot 90$ (4)	$4 \cdot 89$ (3)	NdVO_{4}
4	1.729	$4 \cdot 84$ (4)	$4 \cdot 83$ (3)	$\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
4	1.722	$4 \cdot 91$ (19)	$4 \cdot 90$ (16)	$\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
4	1.740	$4 \cdot 68$ (18)	$4 \cdot 69$ (16)	$\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
4	1.719	$4 \cdot 98$ (7)	$4 \cdot 96$ (6)	$\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
4	1.718	$4 \cdot 98$ (16)	$4 \cdot 95$ (14)	$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$
4	1.720	$5 \cdot 02$ (5)	4.99 (5)	
4	1.727	$4 \cdot 89$ (5)	$4 \cdot 87$ (4)	FeVO_{4}
4	1.720	$4 \cdot 98$ (5)	$4 \cdot 96$ (4)	
4	1.717	$4 \cdot 96$ (1)	4.94 (1)	$\mathrm{Li}_{3} \mathrm{VO}_{4}$
4	1.727	4.99 (2)	4.95 (2)	LiVO_{3}
4	1.730	$4 \cdot 92$ (7)	$4 \cdot 89$ (6)	C0
4	1.731	$4 \cdot 84$ (7)	$4 \cdot 83$ (6)	$\mathrm{CO}_{2} \mathrm{~V}$
4	1.707	$5 \cdot 11$ (4)	$5 \cdot 07$ (3)	$\mathrm{Ca}_{2} \mathrm{VO}_{4} \mathrm{Cl}$
4	1.691	$5 \cdot 36$ (6)	$5 \cdot 28$ (5)	$\mathrm{Na}_{3} \mathrm{VO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
4	1.702	$5 \cdot 20$ (8)	$5 \cdot 14$ (7)	
4	1.694	$5 \cdot 31$ (10)	$5 \cdot 24$ (9)	$\mathrm{Ca}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
4	1.691	$5 \cdot 36$ (9)	$5 \cdot 29$ (8)	
4	1.725	$4 \cdot 99$ (23)	4.95 (20)	$\mathrm{NH}_{4} \mathrm{VO}_{3}$
4	1.731	$4 \cdot 89$ (7)	$4 \cdot 87$ (6)	KVO_{3}
5	$1 \cdot 819$	$5 \cdot 09$ (7)	$5 \cdot 15$ (6)	$\mathrm{CaV}_{2} \mathrm{O}_{6}$
5	1.848	$4 \cdot 84$ (22)	$4 \cdot 92$ (19)	
5	1.808	$5 \cdot 44$ (24)	$5 \cdot 45$ (21)	$\mathrm{CaV}_{2} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
5	1.952	$5 \cdot 12$ (2)	$5 \cdot 12$ (1)	
5	1.883	$4 \cdot 81$ (1)	4.89 (1)	$\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$
5	1.830	$4 \cdot 99$ (15)	$5 \cdot 06$ (13)	$\mathrm{KVO}_{3} . \mathrm{H}_{2} \mathrm{O}$
6	2.009	$5 \cdot 29$ (11)	$5 \cdot 36$ (9)	$\mathrm{CsV}_{3} \mathrm{O}_{8}$
6	1.906	$5 \cdot 03$ (2)	$5 \cdot 21$ (1)	
6	1.924	$5 \cdot 08$ (3)	$5 \cdot 22$ (3)	$\mathrm{Ca}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 17 \mathrm{H}_{2} \mathrm{O}$
6	1.911	4.99 (2)	$5 \cdot 17$ (2)	$\mathrm{a}_{3} \mathrm{~V}_{1}$
6	1.910	$5 \cdot 05$ (2)	$5 \cdot 22$ (2)	
6	1.917	$4 \cdot 96$ (5)	$5 \cdot 13$ (4)	
6	1.913	$5 \cdot 04$ (5)	$5 \cdot 20$ (5)	
6	1.931	$4 \cdot 94$ (6)	$5 \cdot 10$ (5)	$\mathrm{K}_{2} \mathrm{Zn}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$
6	1.914	$4 \cdot 85$ (4)	$5 \cdot 05$ (4)	
6	1.932	$4 \cdot 94$ (5)	$5 \cdot 10$ (4)	
6	1.947	$5 \cdot 25$ (5)	$5 \cdot 35$ (4)	VPO_{5}
6	1.989	$5 \cdot 09$ (7)	$5 \cdot 20$ (6)	$\mathrm{V}_{2} \mathrm{O}_{5}$
6	1.917	$5 \cdot 27$ (36)	$5 \cdot 38$ (31)	
6	1.908	$5 \cdot 64$ (46)	$5 \cdot 67$ (38)	VO($\left.\mathrm{OCH}_{3}\right)_{3}$
6	1.920	$4 \cdot 88$ (12)	$5 \cdot 07$ (10)	$\mathrm{CsV}_{3} \mathrm{O}_{8}$
6	1.965	$5 \cdot 06$ (3)	$5 \cdot 19$ (3)	$\mathrm{CoV}_{2} \mathrm{O}_{6}$
6	1.969	$5 \cdot 13$ (1)	$5 \cdot 25$ (1)	$\mathrm{MgV}_{2} \mathrm{O}_{6}$
6	1.944	$4 \cdot 96$ (13)	$5 \cdot 12$ (12)	$\mathrm{CdV}_{2} \mathrm{O}_{6}$

most as good a fit to the valence ($5 \cdot 4 \%$ deviation as against 4.0%) as those calculated with the 54 parameters of the 27 individual curves. The universal curves thus lead to a considerable simplification in the concept of bond strength for isoelectronic series of ions. It is perhaps surprising that a single set of parameters can describe bonds ranging from almost completely ionic to largely covalent, particularly as the bond-strength model of chemical bonding has always been regarded
as an ionic model. However, a prior knowledge of the covalent character of a bond is not needed in order to derive or apply the theory. On the other hand, there is a close correlation between the covalence of a bond as calculated (Pauling, 1940, p. 72) from the electronegativity difference between the terminal atoms and the mean bond strength between these atoms. Fig. 4 shows the logarithm of the covalence plotted against the logarithm of the mean cation-oxygen bond strength for 'cations' with 18,36 and 54 electrons. The relationship between the covalence $\left(f_{c}^{\prime}\right)$ and the bond strength (s) for M-O bonds can be described by the empirical equation

$$
\begin{equation*}
f_{c}^{\prime}=a s^{M} \tag{11}
\end{equation*}
$$

where $a=0.49 \mathrm{v} . \mathrm{u}$. and $M=1.57$. Similar curves can be drawn for other isoelectronic series (Fig. 5) with the values of a and M given in Table 6. It follows from equation (10) that the covalence is related also to bond length by

$$
\begin{equation*}
f_{c}^{\prime}=a\left(\frac{R}{R_{1}}\right)^{-M N_{1}} \tag{12}
\end{equation*}
$$

with the values of a and $M N_{1}$ given in Table 6. The constancy of the values of $M N_{1}$ for the 'ions' with 2, 10 and 18 electrons is rather striking but may be fortuitous.

Table 6. Parameters relating covalence to bond strength and bond length in the equations

$$
f_{c}^{\prime}=a s^{M}=a\left(R / R_{1}\right)^{-M N_{1}}
$$

Number of electrons

in core	a (v.u.)	M	$M N_{1}$
0	0.67	$1.8-2.0^{*}$	4^{*}
2	0.60	1.73	7.04
10	0.54	1.64	7.04
18	0.49	1.57	7.04
28	0.60	1.50	9.08
36	0.49	1.57	
46	0.67	1.43	
54	0.49	1.57	

* Estimated from the trends in the value of M in subsequent series.

The relationships between the covalence and the bond strengths of M-O pairs have been calculated on the basis of mean values but it would not be unreasonable to suppose that these relationships could be used to calculate the covalence of an individual bond on the basis of its known bond strength. This would be in accord with the notion that the covalent character of a bond depends amongst other things on the oxidation state and coordination number of its terminal atoms. If these relationships can be applied to individual bonds they would allow a quantitative prediction of the difference in character between the very short and the very long $\mathrm{V}-\mathrm{O}$ bonds found in $\mathrm{V}_{2} \mathrm{O}_{5}$. The short bond ($R=$ $1.586 \AA$) has a bond strength of $1.86 \mathrm{v.u}$. and a covalence of $1.30 \mathrm{v} . \mathrm{u}$. giving 30% ionic character; on the
other hand the long bond ($R=2.787 \AA$) has a bond strength of $0.103 \mathrm{v} . \mathrm{u}$. and a covalence of $0.013 \mathrm{v.u}$. giving 87% ionic character.

Hydrogen provides another interesting example of the relationship between bond strength and covalence. Typically it forms two or more bonds between oxygen atoms in crystals. One of these is usually strong ($s \sim 0 \cdot 85$), the others are weak ($s \lesssim 0 \cdot 15$). The assignment of the electronegativity of hydrogen is based on a consideration of the strong hydrogen bond and leads to a covalent character of 67% for a single $\mathrm{O}-\mathrm{H}$ bond. In crystals this covalence is shared very unequally between the two or more bonds. Using a value of 1.8 to 2^{*} for the exponent M in equation (11) the strong bond is calculated to have about 58% and the weak bond 10% covalent character, according well with the view that the weak $\mathrm{O}-\mathrm{H}$ bond is primarily electrostatic. Both in

[^6]

Fig. 4. M-O covalence $v s$. bond strength for 'cations' with 18 , 36 and 54 electrons. The scales are logarithmic.
strength and character the weak $\mathrm{O}-\mathrm{H}$ bond is similar to a typical $\mathrm{Na}-\mathrm{O}$ bond, an observation that agrees well with the alkali metal-like behaviour of $\mathrm{NH}_{4}{ }^{+}$.*

The fact that the relations between bond lengths, bond strengths and covalence are the same for all isoelectronic ions suggests a simple model of chemical bonding in which the electrons are divided into core electrons and valence electrons. The latter are all associated with bonds, one electron pair per unit bond strength, and are responsible for the attractive force in the bond. The core electrons give rise to the Born repulsion between atoms. Equilibrium is achieved locally when these two opposing forces are equal, the stronger the bonding force, the closer the distance of approach.
The properties of the core are described by the fitted parameters given in Table 2 and illustrated in Fig. 2. R_{1} describes the sum of the radii of the cation and oxygen cores for a unit bond strength and N describes

[^7]

Fig. 5. M-O covalence $v s$. bond-strength curves for the various isoelectronic series. The numbers associated with each curve indicate the number of electrons in the 'cation' (core electrons). The scales are logarithmic.
the 'hardness' of the core, larger values representing harder cores. Both the properties of the core and the properties of the bond depend only on the numbers of electrons in each, and since these are known from classical valence theory, the prediction of bond lengths becomes remarkably simple.

This model is somewhat different from the ionic picture usually associated with a bond-strength formalism. In the ionic picture no distinction is made between core and valence electrons but the atoms are treated as negatively or positively charged spheres. In our approach all atoms are treated as positively charged spheres (nucleus plus core electrons e.g. $\mathrm{Li}^{+}, \mathrm{S}^{6+}$ and O^{2+} rather than O^{2-}) held together by the negative valence electrons. In order to apply the theory it is not necessary to know whether the electrons are placed in the bond symmetrically (covalent bond) or asymmetrically (ionic bond), but the correlation between the covalence and the bond strength suggest that the position of the electrons with respect to the oxygen atom varies in a uniform way with bond strength, residing completely on the oxygen atom at zero strength (ionic limit) and moving towards the centre of the bond for bond strengths of about two (covalent limit).

Our model differs from the Valence Shell Electron Pair Repulsion (VSEPR) theory of Gillespie \& Nyholm (1957) in that we assume that the non-bonding electron pair belongs not to the valence shell but to a spherically symmetrical core. However, the VSEPR theory is most useful in discussing angles subtended by the ligands at the cation while our theory is more useful in discussing distances.

3. Distorted coordination polyhedra

The stereochemistry of many elements can be discussed quite effectively using a charged-hard-sphere model in which the properties of an atom are described solely by its ionic charge (valence) and its radius. Such atoms tend to have rather symmetric coordination with bonds of equal length. The stereochemistry of such ions is not difficult to understand in terms of most theories of chemical bonding. More recently the stereochemistry of atoms which typically have rather distorted environments (e.g. $\mathrm{Cu}^{2+}, \mathrm{Sb}^{3+}$ and O^{2-}) have been discussed in terms of the electron configuration in such theories as the ligand field theory (Orgel, 1960) and the valenceshell electron-pair repulsion theory (Gillespie \& Nyholm, 1957). In still further cases (e.g. alkali metals and V^{5+}) distorted environments occur for which no really predictive theory has yet been proposed. For atoms in such distorted environments the concept of ionic radius has proved difficult to apply and, because of the uncertainty in assigning a coordination number, it has also been difficult to use theories based on mean bond strength.

The use of $R-s$ curves resolves this problem by avoiding the concept of coordination number altogether. In cases where the coordination is regular, the bond strength for each bond can be calculated by divid-
ing the valency by the coordination number (Pauling, 1929; Baur, 1970), and arguments based on average bond length or bond strength lead to the same conclusions. But the method of calculating individual bond strengths can be applied just as easily in cases where the coordination is very irregular. Two examples are given in Tables 7 and 8 and are illustrated in Fig. 6 where the average bond length and the bond-strength sums are plotted as successively longer bonds are added to the coordination spheres around Na^{+}and V^{5+}. In the bond-strength-sum graph, regular coordination appears as a straight line and irregular coordination as a curved line, but both level off at values of $\Sigma s=z$. The inclusion of very long bonds makes little difference to the bondstrength sums but alters the average bond length dramatically indicating that for these ions the concept of average bond length must be used with great caution.

In practice there will always be an arbitrary cut-off in the number of bonds for which strengths are calculated and this makes a small difference to the sums. At $3.0 \AA$ the bond strength for a $\mathrm{Na}-\mathrm{O}$ bond is $0.05 \mathrm{v} . \mathrm{u}$. and inclusion of bonds in the range 3.0 to $4.0 \AA$ corresponds to change in the value of R_{0} of about 0.01

Table 7. Bond lengths in selected sodium compounds
For reference see the Appendix

Ligand number	$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}$,	$\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2}$	$\mathrm{Na}_{2} \mathrm{GeO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$	NaIO_{4}
1	2.271	2.453	2.36	2.55
2	2.314	2.453	2.37	2.55
3	2.326	2.453	2.43	2.55
4	2.441	2.453	2.45	2.55
5	2.890	2.453	2.46	2.61
6	3.156	2.453	2.52	2.61
7	3.294		3.68	2.61
8			3.85	2.61

Table 8. Bond lengths in selected vanadates
For reference see the Appendix

Ligand number	$\mathrm{Li}_{3} \mathrm{VO}_{4}$	KVO_{3}	$\mathrm{~V}_{2} \mathrm{O}_{5}$	$\mathrm{Ca}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} .17\left(\mathrm{H}_{2} \mathrm{O}\right)$
1	1.714	1.652	1.586	1.681
2	1.717	1.661	1.782	1.681
3	1.717	1.806	1.878	1.903
4	1.720	1.806	1.878	1.903
5			2.023	2.135
6			2.787	2.135

Fig. 6. (a) Average $\mathrm{Na}-\mathrm{O}$ bond length as successively longer bonds are included. (b) Bond-strength sums around Na as successively longer bonds are included. (c) Average V-O bond length as successively longer bonds are included. (d) Bond-strength sums around V as successively longer bonds are included.

Å. The parameters given in Table 1 were calculated using a cut-off at around $3 \AA$, the point at which Nacation distances begin to appear in the coordination sphere. This cut-off point also gives the best agreement with the universal curves.

Baur (1970) is able to predict the variation of the bond lengths in distorted coordination by recognizing that where the sum of Pauling's average bond strengths around the oxygen atom is greater than the valence, the structure will compensate by weakening (lengthening) the bond to it. He obtains linear regressions between the amount of the lengthening and the excess bond strength. Although his method gives a direct prediction of the variation of individual bond lengths from the mean, it requires a knowledge of the coordination numbers in the structure and a separate curve for a given cation for each coordination number. His linear regressions are equivalent to linear $R-s$ curves and for the examples he discusses this approximation is reasonable since the average bond length is constant from one site to another. On the other hand for strongly distorted coordination such as is found in octahedral V^{5+} and Cu^{2+} the average bond lengths show a significant variation. From the non-linear shape of our $R-s$ curve we expect that such highly distorted coordination would lead to a larger average bond length. The correlation between the average bond length (\bar{R}) and the degree of distortion ($\Delta=$ mean-square relative deviation from the average) is shown in Fig. 7 for V^{5+}. Similar data for $\mathrm{Cu}^{2+}, \mathrm{Mg}^{2+}$ and Li^{+}are given by Shannon \& Calvo (1973a, b). Linear regressions of average bond length on distortion yield the parameters given in Table 9 for $\mathrm{V}^{5+}, \mathrm{Cu}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Li}^{+}, \mathrm{Zn}^{2+}$ and Co^{2+}. For ions showing large distortion the correlation is remarkably high. For only slightly distorted octahedra other effects, such as anion coordination, become more important and this is illustrated by the better fit that is obtained in these cases when the average bond length is replaced by the effective ionic radius which takes anion coordination into account (Shannon \& Prewitt, 1969).

Fig. 7. Average $\mathrm{V}-\mathrm{O}$ bond length as a function of distortion (mean-square relative deviation of bond length from the average) in VO_{6} octahedra.

Table 9. Variation of mean M-O distance and effective ionic radius in octahedral environments as a function of distortion
The first equation given is that fitted to the observed values of \bar{R} and Δ, the second (in parentheses) is that predicted from the $R-s$ curves using equation (13).
The effective ionic radii (\bar{r}) are calculated by subtracting the oxygen radius corrected for anion coordination from the mean bond length (Shannon \& Prewitt, 1969).

Atom	$\max 4$	Equation	Correlation coefficient	Goodness of fit
V^{5+}	0.0576	$\begin{gathered} \bar{R}=1 \cdot 887+2 \cdot 62 \Delta \\ (\bar{R}=1 \cdot 855+5 \cdot 84) \end{gathered}$	0.98	0.008
Cu^{2+}	0.0316	$\begin{aligned} & \bar{R}=2.095+3.604 \\ & (\bar{R}=2.084+6.64) \end{aligned}$	$0 \cdot 89$	0.016
Mg ${ }^{\text {+ }}$	0.0156	$\begin{aligned} \bar{R} & =2.094+8.31 \Delta \\ (\bar{R} & =2.098+6.3 \Delta) \end{aligned}$	$0 \cdot 72$	0.021
		$\bar{r}=0.728+8.864$	0.77	0.018
Li^{+}	0.0148	$\begin{aligned} & \bar{R}=2 \cdot 159+8 \cdot 42 \Delta \\ & (\bar{R}=2 \cdot 167+5 \cdot 34) \end{aligned}$	$0 \cdot 31$	0.030
		$\bar{r}=0.784+9.02 \Delta$	0.79	0.035
Zn^{2+}	0.0071	$\begin{gathered} \bar{R}=2.099+7.7 \Delta \\ (\bar{R}=2.111+6.3 \Delta) \end{gathered}$	$0 \cdot 64$	0.021
Co^{2+}	0.0046	$\bar{r}=0.736+8.20 \Delta$	$0 \cdot 74$	0.016
		$\underline{R}=2 \cdot 106+7 \cdot 384$	$0 \cdot 42$	0.019
		$\begin{aligned} (\bar{R} & =2.118+6.4 \Delta) \\ \bar{r} & =0.734+11.7 \Delta \end{aligned}$	$0 \cdot 70$	$0 \cdot 016$

The high correlation between the average bond length and the distortion indicates that the $\mathrm{V}-\mathrm{O}$ bond-strength-bond-length curve, for example, could be fitted with a quadratic equation. Such an equation can be obtained by expanding equation (5) by the binomial theorem to second order and this in turn leads to the linear relationship between average bond length and distortion:

$$
\begin{equation*}
\bar{R}=R_{r}+\frac{R_{r}(N+1)}{2} \tag{13}
\end{equation*}
$$

where R_{r} is the expected bond length for regular coordination. Table 9 list in parentheses the values for the coefficients of equation (13) predicted from the $R-s$ curves. The agreement with the fitted values is satisfactory where the distortion is small but for Li, Mg and particularly Cu and V it is clear that the higher-order terms in the expansion cannot be neglected. As these depend on the nature of the distortion they will vary from one cation site to another and cannot be calculated for a general case.

4. Comparison with elastic properties

The assumption underlying the use of bond lengths to measure bond strength is that the strength of a bond can be measured by its ability to overcome the shortrange repulsive force that exists between any two atoms. The parameter which measures this repulsion in an ionic theory is the Born exponent (n).*

* Although the inverse power law is believed to be inferior to the exponential form (Born \& Mayer, 1932; Linnett, 1940; Fumi \& Tosi, 1964), Anderson (1970) has concluded that it is satisfactory for analysing the pressure derivatives of the bulk modulus of oxides.

Zachariasen (1931) has shown that in an ionic compound which exists in both the NaCl and the CsCl structure,

$$
R=\sqrt[n-1]{\sqrt{n B}} \begin{gather*}
A z_{1} z_{2} e^{2} \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{R_{\mathrm{CsCl}}}{R_{\mathrm{NaCl}}}={ }^{n-1} \sqrt{\frac{n B_{\mathrm{CsCl}^{2}}}{n B_{\mathrm{NaCl}}} \cdot \frac{A_{\mathrm{NaCl}}}{A_{\mathrm{CsCl}}}} \tag{15}
\end{equation*}
$$

where $B=$ Born repulsion coefficient and $A=$ Madelung constant. Zachariasen assumed B to be proportional to the coordination number of the cation and A not to vary greatly from one structure to another. The latter assumption would appear to be fairly drastic but Templeton (1953) has shown that in a variety of structures the reduced Madelung constant ($\bar{\alpha}=$ average atomic Madelung constant) can be expressed as a function of average coordination number ($\bar{\nu}$) in the form:

$$
\bar{\alpha}=1.89-\frac{1}{\bar{\nu}} .
$$

If \bar{v} varies from 4 to 6 , this results in only a 6% variation in $\vec{\alpha}$. Using equation (15) Zachariasen was able to rationalize the change in interatomic distance with coordination number for a large variety of ions. Because Pauling's (1929) definition of bond strength merely involves z and v, it is apparent from equation (14) that

$$
\begin{equation*}
s=\frac{z}{v}=\frac{K}{R^{n-1}} \tag{16}
\end{equation*}
$$

The Born exponent can also be found from compressibility measurements. Anderson (1970) and Anderson \& Anderson (1970) have evaluated n using the pressure derivative of the bulk modulus and their values (calculated using the power-law repulsion term) are compared in Table 10 with the values calculated from the $R-s$ curves. With the exceptions of $\mathrm{BeO}, \mathrm{CaO}$, SiO_{2} and TiO_{2} there is satisfactory agreement. Anderson \& Anderson have found the elastic behaviour of
SiO_{2} and TiO_{2} anomalous and attribute the effect to bond bending and directional forces. The values of n determined from the elastic constant for BeO and for CaO (Son \& Bartels, 1972) differ by a factor of two from the values we have obtained. Fisher (1973) has suggested that the origin of this discrepancy may be in the derivation of n from the pressure derivative of the bulk moduli. Using the relationships derived by Anderson \& Liebermann (1970), Fisher obtains values of n for single-crystal MgO and CaO from the elastic modulus, C_{44}, and the bulk modulus, K. These values agree well with the values of n determined from crystallographic data in Table 10. It would be interesting to see if the discrepancy between the two values of n for BeO could be removed in a similar manner. In the light of the rather drastic assumptions implicit in equation (16), the agreement between the Born exponent determined from the elasticities and that determined from the crystal structures is encouraging.

Uses of bond-strength-bond-length curves

Previous workers have used bond-strength-bondlength curves for a number of practical purposes related to the evaluation of crystal-structure determinations (see Donnay, 1972). Our curves can achieve the same results with considerably more generality and flexibility as is illustrated in the examples given below.

1. Testing for the correctness of a structure

Bond-strength curves provide a convenient method of testing the plausibility of a proposed crystal structure, since the bond-strength sums around any atom should normally lie within 5% of the valence. Larger discrepancies in well refined structures might indicate an incorrect structure. The effect is well illustrated by the structure of $\mathrm{Zn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ which was originally refined by Garcia-Blanco \& Fayos (1968) in the space group Ic. Baur \& Tillmans (1970) subsequently refined it in the space group $I 2 / c$ and although they obtained the same

Table 10. The Born exponent n evaluated from elastic constants and from bond-strength parameters

		Born exponent	
Compound	From elastic constants	From individual bond-strength curves§	From universal bond-strength curves§
BeO	9.5*	$5 \cdot 3$	$5 \cdot 0$
MgO	6.5,* 4.7†	$6 \cdot 0$	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	5.0*	6.0	
$\stackrel{\alpha-\mathrm{SiO}_{2}}{ }$	$12 \cdot 2^{*}$	$5 \cdot 5$	$5 \cdot 3$
SiO_{2} (stishovite)	14.0*	5.5	$5 \cdot 3$
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	5.6*	$6 \cdot 0$	
$\mathrm{Mg}_{2} \mathrm{SiO}_{4}$	6.5*	$5 \cdot 7$	
CaO	$8 \cdot 7, * 11 \cdot 0, \dagger 6 \cdot 1 \ddagger$	7.0	
TiO_{2} (rutile)	13.3* ${ }^{\text {* }}$	$5 \cdot 0$	$5 \cdot 5$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	6.6*	$6 \cdot 3$	$6 \cdot 1$
ZnO	7.4*	$6 \cdot 0$	$7 \cdot 0$
$\begin{aligned} & \text { * Anderson (1970) and Anderson \& Anderson (1970) } \\ & + \text { Son \& Bartels (1972) } \\ & \ddagger \text { Fisher (1973) } \\ & \S n=\mathrm{N}+1 \end{aligned}$			

agreement index ($R=0 \cdot 12$) as Garcia-Blanco \& Fayos they preferred their structure on chemical as well as crystallographic grounds (Baur, 1970). The bondstrength calculations confirm Baur \& Tillmans's preference, giving a mean deviation of the bond-strength sums from the valence of 13% for the refinement in $I c$ and only 3.4% for that in $I 2 / c$ (see Table 11).

Table 11. Bond-strength sums in two structures proposed for $\mathrm{Zn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$

Space group	z	Garcia-Blanco \& Fayos (1968)		$\begin{gathered} I 2 / c \\ \text { Baur \& } \\ \text { Tillmans (1970) } \end{gathered}$
Zn (1)	2	1.99	2.07	1.95
Zn (2)	2	$2 \cdot 24$	1.69	1.96
$\mathrm{Zn}(3)$	2	2.08	1.80	1.99
B(1)	3	$3 \cdot 23$	$3 \cdot 44$	$3 \cdot 12$
B(2)	3	$2 \cdot 76$	$3 \cdot 67$	3.01
$\mathrm{O}(1)$	2	$2 \cdot 39$	$2 \cdot 11$	2.05
$\mathrm{O}(2)$	2	$2 \cdot 08$	1.66	1.95
$\mathrm{O}(3)$	2	1.97	2.55	$2 \cdot 12$
$\mathrm{O}(4)$	2	2.31	1.96	$2 \cdot 08$
$\mathrm{O}(5)$	2	$1 \cdot 82$	1.95	1.91
O(6)	2	$1 \cdot 77$	$2 \cdot 39$	$1 \cdot 92$
Mean deviatio from z				3.4\%

2. Determining site occupancy in solid solutions

When two atoms of different valence but belonging to the same or neighbouring elements (e.g. Al^{3+} and $\mathrm{Si}^{4+} ; \mathrm{Fe}^{2+}$ and Fe^{3+}) are present in a crystal, it is usually not possible to determine directly from X-ray diffraction studies the ratio of each on any particular site. The occupancy can be inferred from a study of the bond lengths between the site and its first neighbours since the lower valence ion gives rise to longer bonds
(see for example Evans, 1960; Smith \& Bailey, 1963; Ribbe \& Gibbs, 1969). Such methods depend on the construction of bond-length-site-occupancy curves for each pair of ions. The use of bond strength provides a more general way of assigning site occupancy since such disordered atoms will normally have the same or very similar $R-s$ curves, and the calculated bond-strength sums will be equal to the average valence of the site. Two examples are given. In Table 12 the distribution of Al^{3+} and Si^{4+} in sanidine, $(\mathrm{Na}, \mathrm{K}) \mathrm{AlSi}_{3} \mathrm{O}_{8}$, is predicted using the universal bond-strength curve, the bond-strength curve corrected for oxygen coordination, and ionic radii (Shannon \& Prewitt, 1969). These are compared with the site occupancy determined from neutron diffraction and the agreement is quite satisfactory. The method can be used with less precision to calculate the ratio of K to Na on the alkali metal site.
Table 13 compares the bond strengths in three ferrospinels. The bond-strength sums at each site have been calculated with the $R-s$ curves appropriate to each species present and the weighted average bond strengths are shown for three cases-(a) normal spinel, (b) inverse spinel and (c) random spinel. In each case these are compared with the expected average valence. Table 13 clearly indicates that $\mathrm{Fe}_{2} \mathrm{TiO}_{4}$ is an inverse spinel and $\mathrm{Fe}_{2} \mathrm{ZnO}_{4}$ is normal in agreement with assignments given by other workers. The result for $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is not quite as unambiguous but suggests that the Fe^{2+} ions are disordered over all sites, a result at variance with accepted view that $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is an inverse spinel.

3. Prediction of positions of hydrogen atoms

The $R-s$ curve for hydrogen has been calculated using hydrogen positions determined by neutron dif-

Table 12. Cation distribution in sanidine
Structural information from Prewitt (1973) Estimated errors given in parentheses.

	Bond strength sums
Site	(universal curves)
$T 1$	3.72
$T 2$	3.87
$\mathrm{~K}, \mathrm{Na}$	$1.13($ as K$)$
	$0.79($ as Na$)$

Universal
bond-strength
sums

Bond strength corrected for	Ionic radii
O coordination	Prewitt, 1969)
$73 \% \mathrm{Si}$	$71 \% \mathrm{Si}$
$82 \% \mathrm{Si}$	$92 \% \mathrm{Si}$

Neutron
diffraction
(Prewitt, 1973)

$68 \% \mathrm{Si}$
$82 \% \mathrm{Si}$
$88 \% \mathrm{~K}$
$12 \% \mathrm{Na}$

Table 13. Bond strengths in $\mathrm{Fe}_{2} \mathrm{XO}_{4}$ spinels

X	Site	$R(\AA)$	$\begin{gathered} P\left(\mathrm{Fe}^{3+}\right) \\ \text { Table } 4-2 \end{gathered}$	$\begin{aligned} & P\left(\mathrm{Fe}^{2+}\right) \\ & \text { Table 4-1 } \end{aligned}$	$\begin{gathered} P(\mathrm{X}) \\ \text { Table 4-2 } \end{gathered}$	$P($ normal $)$		P (inverse)		P (random)	
						Theor.	Obs.	Theor.	Obs.	Theor.	Obs.
Ti	A	2.00		2.01	$2 \cdot 49$	4.00	2.49	2.00	2.01	2.67	$2 \cdot 17$
	B	2.03		2.78	$3 \cdot 49$	$2 \cdot 00$	2.78	$3 \cdot 00$	$3 \cdot 16$	2.67	3.02
Zn	A	1.97	$2 \cdot 25$		1.93	2.00	1.93	$3 \cdot 00$	$2 \cdot 25$	$2 \cdot 67$	$2 \cdot 14$
	B	2.02	$2 \cdot 96$		$2 \cdot 48$	3.00	$2 \cdot 96$	$2 \cdot 50$	$2 \cdot 72$	$2 \cdot 67$	$2 \cdot 80$
Fe	A	1.887	$2 \cdot 80$	2.59		$2 \cdot 00$	2.59	$3 \cdot 00$	$2 \cdot 80$	$2 \cdot 67$	2.73
	B	2.056	$2 \cdot 69$	2.76		$3 \cdot 00$	2.69	$2 \cdot 50$	$2 \cdot 72$	$2 \cdot 67$	2.71

References
$\mathrm{Fe}_{2} \mathrm{TiO}_{4}$ Ishikawa, Sato \& Syono (1971).
$\mathrm{Fe}_{2} \mathrm{ZnO}_{4}$ Chalyi \& Rozhenko (1956); Bałanda, Szyłula, Dimitrijević \& Todovović (1969).
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ Hamilton (1958)
fraction. In many cases it is not possible to detect hydrogen atoms using X-ray diffraction and where it is possible their positions are not only less accurately known but differ systematically from the positions found by neutron diffraction. Consequently the bond strength curves for $\mathrm{H}-\mathrm{O}$ bonds quoted in Table 1 are only appropriate for bonds determined by neutron diffraction.

Often it is of interest to know where the hydrogen atoms are to be found in the crystal in those cases where their presence is not detectable by X-ray diffraction. Frequently the presence of short O-O distances is indicative of a hydrogen bond and the hydrogen atoms can be assigned qualitatively without much ambiguity. Donnay \& Allman (1970) have shown that the calculation of bond-strength sums provides additional information about the location of hydrogen atoms. Our bond strengths can be used in a similar way but have the additional advantage of ease in calculation. Table 14 shows the calculations of bond strengths for $\mathrm{MgSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$ both with and without the inclusion of the hydrogen atoms. Table 15 shows similar calculations for $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ where the hydrogen positions are not known. Estimates of $\mathrm{O}-\mathrm{H}$ distances based on predicted bond strengths give values for the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances that are in striking agreement with those observed. A somewhat different prediction for the positions of the hydrogen atoms based on different considerations has recently been made by Baur (1972).

4. Calculation of effective ionic radii

The $R-s$ functions given in Table 3 allow one to obtain more statistically valid effective ionic radii than were previously possible and in addition allow extrapolation to obtain radii for whicin no examples have yet been found. Some examples of previously undetermined radii and of radii differing significantly from values in Shannon \& Prewitt (1969) are listed in Table 16.

Table 15. Prediction of hydrogen atom positions in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ using universal bond-strength curves

Structural information from Dickens, Mauer \& Brown (1970).

	Bond strength sums without	Estimated bond strengths for hydrogen		Estimated bond strength sums
	H	H(1)	H(2)	with H
$\mathrm{Na}(1)$	1.02			1.02
Na (2)	$1 \cdot 11$			$1 \cdot 11$
C	3.98			$3 \cdot 98$
O(1)	$1 \cdot 88$	$0 \cdot 16$		2.04
O(2)	1.98			1.98
O(3)	1.80		0.24	2.04
O(4)	0.45	0.84	0.76	2.05
		$1 \cdot 00$	1.00	
Hydrogen	bond			
	Bond strength	Bond ength (\AA)	Predicted $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$	Observed $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(4)-\mathrm{H}(1)$	0.84 0.16	0.93	3.0	$2 \cdot 907$ (2)
$\mathrm{H}(1)-\mathrm{O}(1)$) 0.16	2.1 0.96	3.0	2.907 (2)
$\mathrm{O}(4)-\mathrm{H}(2)$ $\mathrm{H}(2)-\mathrm{O}(3)$	0.76 0.24	$\underset{1.7}{0.96}$	$2 \cdot 7$	$2 \cdot 684$ (2)

Table 16. Effective ionic radii of ions in unusual coordinations

Ion	CN	Radius
Li ${ }^{+}$	V	0.69
B^{3+}	VI	0.27
P^{5+}	VI	0.38
S^{6+}	VI	$0 \cdot 29$
V^{5+}	V	$0 \cdot 43$
$\mathrm{V}^{\text {S }}$	VI	$0 \cdot 50$
Mn^{2+}	IV	$0 \cdot 65$
Mn^{2+}	V	0.74
Fe^{2+}	V	0.70
Fe^{2+}	VIII	0.91
Fe^{3+}	V	0.56
Ge^{4+}	V	0.46
As^{5+}	V	$0 \cdot 40$
As^{5}	VI	0.46

Table 14. Bond strengths in $\mathrm{MgSO}_{4} 4 \mathrm{H}_{2} \mathrm{O}$ calculated using universal curves

Structural information from Baur (1964)										
	Bond strength sums without H	$\mathrm{H}(1 A)$	$\mathrm{H}(1 B)$	Bond stre $\mathrm{H}(2 A)$	engths for $\mathrm{H}(2 B)$	$\begin{aligned} & \text { hydrog } \\ & \mathrm{H}(3 A) \end{aligned}$	$\begin{aligned} & \mathrm{n} \text { atoms } \\ & \mathrm{H}(3 B) \end{aligned}$	$\mathrm{H}(4 A)$	$\mathrm{H}(4 B)$	Bond strength sums with H
Mg	$2 \cdot 14$									$2 \cdot 14$
S	6.08									6.08
$\mathrm{O}(1)$	1.84						$0 \cdot 16$			2.00
O(2)	1.89				$\begin{aligned} & 0.07 \\ & 0.09 \end{aligned}$					2.05
$\mathrm{O}(3)$	$1 \cdot 50$	$0 \cdot 15$	$0 \cdot 17$						$0 \cdot 19$	2.00
$\mathrm{O}(4)$	1.55			$0 \cdot 14$		$0 \cdot 12$		$0 \cdot 15$		1.97
$\mathrm{O}\left(W_{1}\right)$	0.37	0.82	0.86							2.05
$\mathrm{O}(W 2)$	0.35			$0 \cdot 82$	$0 \cdot 90$					2.07
$\mathrm{O}(W 3)$	$0 \cdot 36$					$0 \cdot 86$	0.78			1.99
$\mathrm{O}(W 4)$	$0 \cdot 36$							$0 \cdot 84$	0.79	$1 \cdot 99$
Bond strength										
sums for H		$0 \cdot 97$	1.03	$0 \cdot 96$	1.06	0.98	$0 \cdot 94$	0.99	0.98	
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$		2.884	2.754	$2 \cdot 835$	$3 \cdot 282$	$2 \cdot 860$	$2 \cdot 833$	$2 \cdot 831$	$2 \cdot 734$	
distance (\AA)					3.042					

5. Testing for positional disorder or anomalous thermal motion

As mentioned above, thermal motion tends to decrease the apparent bond length as determined by diffraction methods. In the present discussion no allowance has been made for this effect on the assumption that the extent of the shortening will be approximately the same for all bonds. If, however, the thermal motion is anomalous large (or small) the apparent bond lengths will be shortened (or lengthened) from the values used in this study, giving rise to anomalously high (or low) bond strengths. The effect is well illustrated by the bond-strength sums calculated around the bridging oxygen atoms in pyrophosphates (Table 17). All the sums are somewhat high but they tend to increase as the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle increases reaching values between 2.3 and 2.4 in those structures where the P-O-P angle is constrained by symmetry to be 180°. In these latter cases the thermal parameters of the bridging oxygen atom are large, indicating that the atom is normally disordered away from the centrosymmetric position. The instantaneous $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle is thus less than 180° and the corresponding $\mathrm{P}-\mathrm{O}$ distances longer than the values
of $1.56 \AA$ normally found in these crystals. The large calculated bond-strength sums in this case are thus indicative of either a positional disorder or an anomalous thermal effect.

Table 17. Bond-strength sums around the bridging oxygen atoms in pyrophosphate groups

	Bond-strength sum (Table 4-2)	$\underset{\left({ }^{\circ}\right)}{\mathrm{P}-\mathrm{O}-\mathrm{P}}$	Reference \dagger
$\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	1.99 (5)	132	69 CJCHA 473409
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 10$ (1)	128	72 CJCHA 502519
$\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 10$ (2)	139	70 JSSCB 1120
$\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 12$ (5)	131	68 ACSAA 221419
$\beta-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 12$ (4)	131	66 ACCRA 21942
$\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 14$ (3)	130	68 INOCA 71345
$\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 18$ (4)	144	67 ACCRA 23289
$\beta-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 22$ (4)	138	66 ACCRA 21942
$\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 23$ (3)	148	70 JSSCB 1120
$\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$2 \cdot 26$ (3)	157	67 ACCRA 22665
$\mathrm{SiP}_{2} \mathrm{O}_{7}$-III	2.27 (4)	139	70 ACBCA 26233
$\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	2.31 (2)	180	65 CJCHA 431147
$\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	2.38 (2)	180	65 CJCHA 431139

\dagger The references are given in the same form as in the Appendix.

Table 18. Structures used in the evaluation of bond-strength-bond-lengths parameters

We wish to thank Dr K. K. Wu for calculation of the parameters of many of the $R-s$ curves, Mr P. S. Gumerman for assistance with the figures, Mrs Ruth Shannon for preparing the bibliography and Drs D. B. Rogers, W. H. Baur, G. Donnay and D. T. Cromer for critical comments. The research was supported by the National Research Council of Canada.

APPENDIX

Structures and their references used in the evaluation of the bond-strength-bond-length parameters given in Tables 1,2 and 3 are given in Table 18. The reference is given in the following form: year, journal (a list of codes used is given at the end), volume and page number. For papers marked with an asterisk, see Table 4.

References

Allman, R. \& Donnay, G. (1971). Acta Cryst. B27, 18711875.

Anderson, D. L. \& Anderson, O. L. (1970). J. Geophys. Res. 75, 3494-3500.

Anderson, O. L. (1970). J. Geophys. Res. 75, 2719-2740.
Anderson, O. L. \& Liebermann, R. C. (1970). Earth Planet. Interiors, 3, 61.
Balanda, M., Szylula, A., Dimitrijević, Z. \& Todovović, J. (1969). Phys. Stat. Sol. 32, K91-K93.
Baur, W. H. (1964). Acta Cryst. 17, 863-869.
Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129155.

Baur, W. H. (1972). Acta Cryst. B28, 1456-1465.
Baur, W. H. \& Tillmans, E. (1970). Z. Kristallogr. 131, 213-221.
Born, M. \& Mayer, J. E. (1932). Z. Phys. 75, 1-18.
Brown, G. E. \& Gibbs, G. V. (1969). Amer. Min. 54, 15281539.

Brown, G. E. \& Gibbs, G. V. (1970). Amer. Min. 55, 15871607.

Byström, A. \& Wilhelmi, K. A. (1951). Acta Chem. Scand. 5, 1003-1010.
Chalyi, V. P. \& Rozhenko, S. P. (1956). Dokl. Akad. Nauk SSSR, 108, 875-877.
Clark, J. R., Appleman, D. \& Papike, J. (1969). Miner. Soc. Amer. Spec. Paper, $2,31-50$.
Dickens, B., Mauer, P. A. \& Brown, W. E. (1970). J. Res. Natl. Bur. Stand. A 74, 319-324.

Table 18 (cont.)

Donnay, G. (1969). Carnegie Inst. Wash. Yearb. 68, 292295.

Donnay, G. (1972). Acta Cryst. A28, S 108.
Donnay, G. \& Allman, R. (1970). Amer. Min. 55, 10031015.

Evans, H. T. Jr (1960). Z. Kristallogr. 114, 257-277.
Fisher, E. L. (1973). To be published.
Fumi, F. G. \& Tosi, M. P. (1964). J. Phys. Chem. Solids, 25, 31-43.
Garcia-Blanco, S. \& Fayos, J. (1968). Z. Kristallogr. 127, 145-159.
Gillespie, R. J. \& Nyholm, R. S. (1957). Quart. Rev. 11, 339-380.
Goldschmidt, V. M., Barth, T., Lunde, G. \& Zachariasen, W. H. (1926). Skr. Norske Vidensk. -Akad. Oslo 1. Mat.-Nat. Kl. No. 2.
Gopal, R. (1972). Ph. D. Thesis, McMaster Univ. p. 162.

Hamilton, W. C. (1958). Phys. Rev. 110, 1050-1057.
Ishikawa, Y., Sato, S. \& Syono, Y. (1971). J. Phys. Soc. Japan, 31, 452-460.
Jeffreys, G. A. \& Slaughter, M. (1963). Acta Cryst. 16, 177-184.
Kálmán, A. (1971). J. Chem. Soc. (A), pp. 1857-1859.

Khan, A. A. \& Baur, W.H.(1972). Acta Cryst. B28, 683-693.
Lazarev, A. N. (1964). Izvest. Akad. Nauk SSSR, Ser. Khim. pp. 235-241.
Linnett, J. W. (1940). Trans. Faraday Soc. 36, 1123-1134.
Martin, R. F. \& Donnay, G. (1972). Amer. Min. 57, 554570.

Noll, W. (1963). Angew. Chem. Int. Ed. 2, 73-80.
Orgel, L. E. (1960). An Introduction to Transition Metal Chemistry: Ligand-field Theory. London: Methuen.
Pant, A. K. \& Cruickshank, D. W. J. (1967). Z. Kristallogr. 125, 286-297.
Pauling, L. (1927). J. Amer. Chem. Soc. 49, 765-790.
Pauling, L. (1929). J. Amer. Chem. Soc. 51, 1010-1026.
Pauling, L. (1940). The Nature of the Chemical Bond, 2nd ed., p. 72. Ithaca: Cornell Univ. Press.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542-553.
Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
Prewitt, C. T. (1973). To be published.
Ribbe, P. H. \& Gibbs, G. V. (1969). Amer. Min. 54, 85-94.
Shannon, R. D. (1971). Chem. Commun. pp. 881-882.
Shannon, R. D. \& Calvo, C. (1973a). To be published.
Shannon, R. D. \& Calvo, C. (1973b). To be published.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.

Table 18 (cont.)

Table 18 (cont.)

Slaughter, M. (1966). Geochim. Cosmochim. Acta, 30, 299-313.
Smith, J. V. \& Bailey, S. W. (1963). Acta Cryst. 16, $801-$ 811.

Son, P. R. \& Bartels, R. A. (1972). J. Phys. Chem. Solids, 33, 819-828.

AS (5.)

Templeton, D. H. (1953). J. Chem. Phys. 21, 2097-2098. Zachariasen, W. H. (1931). Z. Kristallogr. 80, 137-153.
Zachariasen, W. H. (1954). Acta Cryst. 7, 795-799.
Zachariasen, W. H. (1963). Acta Cryst. 16, 385-389.
Zachariasen, W. H. \& Plettinger, H. A. (1959). Acta Cryst. 12, 526-530.

[^0]: * On leave of absence from Central Research Laboratory, E. I. duPont de Nemours, Wilmington, Delaware.
 \dagger Bond number is defined as the number of shared electron pairs per bond.

[^1]: * Although Donnay \& Allman (1970) chose to use the term bond valence, we prefer to continue Pauling's original terminology. We have also changed the symbols in equation (2) to be consistent with those of Zachariasen (1931).

[^2]: * The concept of bond strength as defined by Pauling (1929) is one derived from an ionic model of chemical bonding. In this paper we show that the concept can be used just as well in situations where the bonding is primarily covalent (see below). The fact that the theory works in a given situation cannot be taken as evidence that the bonding is ionic even though for convenience we have continued to use terms such as 'cation' and 'anion'. The term 'electrostatic bond strength' is used in this paper in a formal sense only and it does not imply an ionic model.

[^3]: * In certain cases when the refined value of N appears to be unreasonably large or small we have chosen a value different from that obtained by the refinement procedure outlined above. In all these cases, which are explicitly noted in Tables 1 and 3, the agreement is equally good with both values.

[^4]: \dagger The individual curves can always be made to give at least as good a fit as the universal ones since the individual parameters can always be chosen to be the same as the universal parameters. However, the method of fitting the parameters is not one that necessarily minimizes the r.m.s. relative deviation. One would expect the individual parameters to show systematic trends across the periodic table and the universal curves provide a reasonably successful attempt to describe these.

[^5]: * Figures in parentheses indicate the number used in the refinement [marked with * in the Appendix]. The other figures indicate the number of $\mathrm{X}-\mathrm{O}$ structures and bonds used in calculating the indices quoted in the last 3 columns.

[^6]: * See Table 6. The conclusions drawn here are not very sensitive to the exact value of M chosen.

[^7]: * Khan \& Baur (1972) have recently reviewed the similarities and differences between $\mathrm{NH}_{4}{ }^{+}$and alkali metals.

